Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality
نویسندگان
چکیده
The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen’s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author’s model: TGCS. It is ended with some testing results comparison and conclusions. Keywords—Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.
منابع مشابه
Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملA-GHSOM: Adaptive Growing Hierarchical Self Organizing Map for Network Intrusion Detection
Anomaly detection and misuse detection are two major types of network intrusion detection systems. Machine learning approaches have been used for anomaly detection. In particular, approaches based on self-organizing maps (SOMs) of artificial neural networks have shown effectiveness at identifying “unknown” attacks. Effectiveness of using traditional SOM models is limited by the static nat...
متن کاملGrowing a hypercubical output space in a self-organizing feature map
Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective stru...
متن کاملDynamic self-organizing maps with controlled growth for knowledge discovery
The growing self-organizing map (GSOM) has been presented as an extended version of the self-organizing map (SOM), which has significant advantages for knowledge discovery applications. In this paper, the GSOM algorithm is presented in detail and the effect of a spread factor, which can be used to measure and control the spread of the GSOM, is investigated. The spread factor is independent of t...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012